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Summary. Domain decomposed Monte Carlo codes, like other domain-decomposed
codes, are difficult to debug. Domain decomposition is prone to error, and interac-
tions between the domain decomposition code and the rest of the algorithm often
produces subtle bugs. These bugs are particularly difficult to find in a Monte Carlo
algorithm, in which the results have statistical noise. Variations in the results due
to statistical noise can mask errors when comparing the results to other simulations
or analytic results.

If a code can get the same result on one domain as on many, debugging the
whole code is easier. This reproducibility property is also desirable when comparing
results done on different numbers of processors and domains. We describe how re-
producibility, to machine precision, is obtained on different numbers of domains in
an Implicit Monte Carlo photonics code.

1 Description of the problem

There are two main issues that can cause a code to get different results when run on
different numbers of domains. The first is that domain decomposition can cause the
code to use a different sequence of pseudo-random numbers. The second, which also
applies to deterministic codes which do not employ pseudo-random numbers, is that
the order of operations on floating point numbers can change, leading to different
results. We will examine both of these problems and describe solutions.

In the method we describe, problems are broken up into spatial domains. Com-
putational work on each domain is performed by a single processor. Thus the number
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of domains and the number of processors are the same. We have not considered hav-
ing multiple processors work on a single domain, as could occur when threads are
used.

Because we have done this work in the context of an Implicit Monte Carlo
code, we will briefly describe that algorithm. The algorithm simulates the time-
dependent interaction of photons and matter. It does this by creating, tracking,
and destroying particles whose behavior models that of real photons in matter. This
requires calculating probabilities for physical events such as emission and scattering.
The behavior of each photon is determined by using a pseudo-random number to
pick one of the behaviors. This is repeated until the photon is completely absorbed
by the matter, leaves the domain, or reaches the end of the time step.

The behavior of matter is simulated on grid of zones, each with different material
properties, such as different temperature and opacity. These zones lose energy when
the emit particles, and gain energy when particles pass through them. Particles can
visit a zone more than once (for example, by leaving and scattering back in from
another zone.) In that case, a particle will deposit energy in the zone more than
once.

Details of the algorithm can be found in [FC71]. This Implicit Monte Carlo
program is used in the KULL [GKR98] and ALEGRA [BM04] inertial confinement
fusion simulation codes. Parallel domain decomposition was accomplished using the
algorithm described in [BUEG04].

Domain decomposition is necessary when the grid is too large to fit on the mem-
ory of one processor. It is also done to make problems run faster by bringing more
computation resources to bear. To domain decompose the problem, we partition
the grid and put parts on different processors. This necessitates moving particles
between domains when they are tracked to domain boundaries. In order to debug
this code, and have confidence in the results, we desire that a problem run on several
domains (i.e., processors) get the same answer as when we run it on one domain
(one processor).

The two issues that impact reproducibility are illustrated by considering the
behavior of particles that cross a domain boundary. If the problem is run using one
processor, there is (of necessity) one domain. With two or more processors, some
zones will be on a domain boundary. Let Zone 1 and Zone 2 abut each other across
a domain boundary, as shown in Fig. 1. Let Particle A be emitted in Zone 1 and
enter Zone 2, scattering back into Zone 1. Let Particle B be emitted later in Zone 1
and stay there, executing a scatter.

When the problem is run on one processor, computations on Particle A continue
until it is terminated (e.g., it leaves the problem through a transmitting boundary.)
Only then are computations on Particle B begun. When it is run on two processors,
Particle A is followed to the domain boundary and passed off to the processor on
which Zone 2 resides. Then Particle B is followed until it is terminated.

Two things happen differently in the one domain case than in the two domain
case.

First, the order of scatters of Particle A and Particle B is reversed. Scattering
events use pseudo-random numbers to determine their outcomes (scattering angle,
etc.) Hence the scatters will result in different behavior unless we ensure that the
particles use the same pseudo-random numbers independent of the order in which
those numbers are accessed.
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Fig. 1. Behavior of two particles in two zones of a Monte Carlo simulation. When
both Zone 1 and Zone 2 are on the same processor, Particle A deposits energy
on both legs of its path and executes a scatter before any calculations involving
Particle B are done. When Zone 1 and Zone 2 are on different processors, Particle A
deposits energy in Zone 1 and then leaves the domain. then Particle B deposits
energy in Zone 1 and scatters. After Particle B is finished, Particle A reenters the
zone and deposits energy. The different order of energy deposition and scattering
(which uses a pseudo-random number) causes different results, unless the Monte
Carlo algorithm is designed to eliminate the differences.

Second, the order of energy deposition in Zone 1 is different. Particle A deposits
energy twice in Zone 1 before Particle B does when one processor is used. When two
processors are used, Particle B deposits between the two deposition events involving
Particle A. Addition in floating point arithmetic is not always exactly commutative:
(x + y) + z can differ from x + (y + z) by a small amount on the order of roundoff.
Hence, the final energy in Zone 1 may be slightly different in the two domain case
than the one domain case. It might be thought that this small difference in results,
on the order of roundoff, could be tolerated. We will demonstrate that it can have
large effects on the result of a calculation by affecting the behavior of particles in
subsequent time steps.

We will now discuss our solutions to these two issues.

2 Ensuring the invariance of the pseudo-random number
stream employed by each particle

Domain decomposition alters the order in which particle event take place. The results
for events which employ pseudo-random numbers will be different unless we ensure
that each particle draws the same stream of pseudo-random numbers independent
of the order in which it is simulated. The way we accomplish this is to give each
particle its own pseudo-random number generator by giving each particle its own
pseudo-random number generator state. An example will illustrate this.
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A simple pseudo-random number generator is

sn = a · sn−1 + b (1)

rn = d · sn (2)

Here a, b, and s are 64 bit unsigned integers, with a = 2862933555777941757,
b = 3037000493, and sn is the nth state of the generator; d and rn are double
precision numbers, with d = 5.4210108624275222 · 10−20 ≈ 1/264 and rn is the nth

pseudo-random number.
Applying the first part of this step maps the 64 bit unsigned integer s into

another 64 bit unsigned integer. Since the maximum value of a 64 bit integer is 264,
multiplying by the inverse of this number results in a value for rn in the range [0, 1].

In this pseudo-random number generator, s is referred to as the state. The
current value of s (along with the constants a and b) completely determines the
next value, and so it completely determines the subsequent stream of pseudo-random
numbers.

If each particle has its own value of s, it will sample the same stream of pseudo-
random numbers independent of the order of particle calculations. That is, for ex-
ample, the fifth pseudo-random number used by Particle A will be the same, inde-
pendent of which processor it is being simulated by, or how many other particles
have been involved in computations since Particle A used its forth pseudo-random
number.

Although we have illustrated the algorithm with a very simple pseudo-random
number generator with a single integer as a state, it will work with more complicated
pseudo-random number generators with larger states. The SPRNG library [SPRNG]
has several pseudo-random number generators that work well in the context of this
algorithm.

In order for this procedure to work, the first value of the state s, called the seed,
will have to be determined in a manner that is independent of the domain decom-
position. Its value will have to be determined from values that are invariant under
domain decomposition. Some examples are global zone numbers, zone position, and
the number of particles that have already been created in a given zone.

Using zone position is safer than using global zone numbers, because a code may
not produce those. However, the position may not be invariant, because the code
producing the grid positions may give slightly different (i.e., “jittery”) positions
with different numbers of domains. We will now describe an algorithm that gives
invariant seeds from zone positions, provided that there is not too much jitter in
these positions.

The first step is to find the minimum and maximum values, in each spatial
dimension, of the locations of the zone centers on each processor. That is, we get
the minimum and maximum values of x, y, and z on each domain. Then we find the
minimum and maximum over all domains by using the MPI Allreduce command.
Since these global values may have some jitter, we shave off the lower order bits.
This is done by a “shaving” algorithm given in the appendix. Now we have three
double precision numbers for the grid that are invariant over the number of domains.

Next, we loop over each zone in the grid and scale its position by the minimum
and maximum values for the grid. That is, we calculate (xzone−xmin)/(xmax−xmin),
for x, y, and z. Because xzone may also contain some jitter on different numbers of
processors, we apply the shaving algorithm to these three numbers. This gives us
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three numbers in [0, 1] for each zone that are invariant over the number of domains.
At least one of these numbers will be different for each zone. (Equality could occur for
one or two of the numbers because, for example, zones in a one dimensional problem
would have the same x and y values if it only had extend in the z direction.)

Then, we multiply these three numbers by 1.8446744 · 1019 ≈ 264, which maps
them into a 64 bit unsigned integers, and we add the three numbers together. This
yields a 64 bit integer number that is different for each zone. To reduce correlations
between zones, we then change this value into a new unique 64 bit unsigned integer
by subjecting it to the DES hash algorithm [PTVF02]. This yields one 64 bit un-
signed integer for every zone that is invariant over the number of domains. To get
initial seeds for each particle in the zone, we increment the zone value by one and
apply the DES hashing. This gives each particle a unique seed that is independent
of the number of domains. Thus each particle accesses the same pseudo-random
number stream, independent of the number of domains.

3 Ensuring that addition is commutative

Using the algorithm described above, we can ensure that all particles access the
same pseudo-random number stream independent of the order in which they are
simulated. They will still, however, deposit energy in the zones in a different order
when the number of domains is changed. Because floating point addition is not
exactly commutative, there will small differences in the total energy deposited in
each zone at the end of the time step.

These differences are on the order of roundoff. However, we cannot tolerate them
because they will eventually have macroscopic consequences. This is because the
energy deposited in the zone will affect the temperature and opacity of the zone in
the next time step. The opacity can be a nonlinear function of the temperature, and
so small differences in the temperature can be magnified. Differences in the value of
the opacity will cause differences in the deposition of energy by every photon that
enters the zone. This in turn will effect the creation and behavior of particles in the
zone. Eventually, some particle will behave differently (e.g., not scatter) because of
slight differences in the values of temperature and opacity. This different behavior
will have a macroscopic effect on the problem, which will affect other particles in
subsequent time steps. Soon, the difference between the two cases will be as large
as if different random number streams were used.

This effect is illustrated in Fig. 2. This plot shows the difference in the temper-
ature in the first zone of three different simulations of a test problem from [FC71].
The opacity is given by equation 5.2 in [FC71]:

σ =
27

ν3T 3/2
(1− eν/T )

1

cm
(3)

with ν and T in keV
The simulations used 100 zones with ∆x = 0.4. It was run for 400 time steps with

∆t fixed at 2.0 · 10−12 sec. A temperature source with Ts = 1.0 keV was applied at
x = 0. The initial temperature was 0.01 keV. The equation of state had a constant
heat capacity of Cv = 8.11829 · 109 erg/(cm3keV) = 0.5917aT 3

s , where a is the
radiation constant. Each simulation used 1000 particles in each time step.
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Fig. 2. The absolute value of the difference in temperature in the first zone of
three simulations vs. time step. Two simulations used the same pseudo-random
number stream but different particle order. (These are denoted the “forward”, Tf ,
and “reverse”, Tr, simulations.) The third simulation used a different pseudo-random
number stream (the “alternate”, Ta, simulation.) |Tf − Tr| is depicted with a solid
line and |Tf−Ta| with a dotted line. |Tf−Ta| is large at the beginning, and fluctuates
but does not increase with time. |Tf − Tr| begins at a value near the roundoff error
for double precision arithmetic, but grows and eventually jumps to same level as the
difference between the “forward” and “alternate” simulations.

All three simulations were run on one processor, and all used the pseudo-random
number described above. Two simulation employed the algorithm described above
which ensured that particles got the same pseudo-random number stream in each
case. The only difference between these simulations was that the particles were run
in a different order. After new particles were created at the beginning of each time
step, the order of the list was reversed before they were tracked. Thus any difference
in the results of these two simulations is due to differences in the order of floating
point addition when the particles deposit energy.

The third simulation used a different pseudo-random number stream entirely.
This was accomplished by adding 78654092354 to the initial value of s in each zone
in the simulation.

Fig. 2 plots |Tf − Tr| and |Tf − Ta| versus the time step in the simulation. Here
Tf is the temperature in the first zone when the particles are run in the usual order,
Tr is the temperature in that zone when the particle order was reversed, and Ta is
the temperature in the run which used a different pseudo-random number stream.

The difference between runs using different pseudo-random number streams is
fluctuates between 0.01 and 0.1 throughout the simulation. (The value of the tem-
perature in the first zone quickly becomes approximately equal to the Ts = 1.0.) The
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difference between runs using the same pseudo-random number stream is initially
very small. The difference in the first time step is O(10−14), which is the size of
roundoff errors. This causes a difference in the opacity in the zone, which means
that photons in the zone will deposit slightly different amounts of energy in the
two simulations. The difference in temperature grows with each time step. However,
the difference remains small, and global measures like the total number of particles
simulated remain the same until time step 304.

At time step 304, the accumulated difference in temperature is large enough
to change the large-scale behavior of the code. A different number of particles are
created in the two simulations in this time step. After that, the differences quickly
grow until they are of the same order as the difference we find compared to the
simulation with a completely different pseudo-random number stream.

The cure for this problem is relatively simple. Floating point addition is not
commutative, but integer addition is. We eliminate differences in results by mapping
the energy to a 64 bit unsigned integer before doing the addition.

This scaling is a simple multiplication that maps the range of photon energy
in the problem into the range that a 64 bit unsigned integer can hold, which is
[0, 264 − 1]. This number changes with each time step, and is calculated at the
beginning of each time step. The multiplier is

S = 263/(Ecensus + Esource). (4)

Here Ecensus is the sum of the energy of photons present at the beginning of the time
step, and Esource is the total amount of energy added to photons at the beginning
of the time step (e.g., aT 4Vzone∆t for the thermal radiation emitted from a zone.)
We have used 263 rather than 264 − 1, the maximum value of an unsigned 64 bit
integer, as a safety factor. Note that S is a double precision value, not an integer.

To calculate the energy deposited into a zone, we sum the 64 bit unsigned integers
obtained from scaling the energy deposited by each photon:

Eint
photon = integer(Ephoton × S + 0.5) (5)

Eint
dep = Eint

dep + Eint
photon (6)

Here Eint
dep is an unsigned 64 bit integer, and integer() represents a cast from a

double precision value to a 64 bit unsigned integer. The 0.5 is added to round to the
closest integer instead of simply truncating the fractional part of the value.

At the end of the time step, when deposition is complete, we get the total energy
deposited in each zone by reversing the multiplication:

Edep = double(Eint
dep/S) (7)

Here, Edep is of type double precision, and double() represents a cast from a 64 bit
unsigned integer to double precision.

4 Results

Here we demonstrate that the algorithm outlined above will give the same results
for simulations using different numbers of processors. The results shown are for the
analytic transport benchmark of Su and Olson [SO97].
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This test problem has an initially cold slab with constant opacity which is heated
by an isotropic source of photons. Interactions with the radiation field heat the
matter and cause it to eventually reach thermal equilibrium. The results depicted
in Fig. 3 are for the case κa = 1, κs = 0, at τ = 0.3, in the notation of [SO97].
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Fig. 3. Matter and radiation temperature in the Su Olson test problem vs. spatial
coordinate. Solid lines depict the results of a simulation run on one domain. Symbols
depict the results for every tenth zone of a simulation run on four domains. The four
domain results are identical to the one domain results, even reproducing the details
of statistical fluctuations.

Fig. 3 shows results for matter and radiation temperature for one and four
domain runs. Simulations using one domain are solid lines. Every tenth point for
the four domain runs is plotted with a symbol. The four domain results exactly
reproduce the one domain results. Even the statistical noise in the Monte Carlo
solution is reproduced.

As part of the KULL regression suite, this test is run weekly. The results for the
temperature in every zone for one, two, and four domain runs are printed to sixteen
places, and the files are compared to ensure that the results are identical. This
reproducibility has been demonstrated for larger problems, up to 1024 processors.

5 Conclusions

We have described algorithms that can be used to make domain decomposed Monte
Carlo photonics code produce the same answer, bit for bit, on various numbers of
domains.
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Two main issues are introduced when the number of domains can vary. The
first is that the particles may not get the same pseudo-random number stream. The
second is that the order of operations can change, causing differences in the results
arising from the fact that floating point addition is not commutative.

The first issue is eliminated with by giving each particle its own random number
generator state, and seeding these states in a manner that is independent of the
number of domains. The second issue is eliminated by using integers, which are
commutative, to do addition.

We have demonstrated that we can achieve bit for bit agreement on problems
when the number of domains varies from one to one thousand.

Appendix: shave algorithm

This algorithm takes a double precision number x and truncates all but the highest
Nd base-ten digits. We use Nd = 7 in our application.

shave( x, Nd ):
if x == 0.0:

return 0.0
Store the magnitude and sign of x.

xsign = sign(x)
xabs = abs(x)

Truncate base-ten exponent to get magnitude of x.
integer n = integer(log10(xabs))

Scale xabs to be between 10Nd and 10Nd+1 .
double s = 10n−Nd

double xscaled = xabs/s
Shave off digits by casting to integer.

integer xshaved
scaled = integer(xscaled)

Restore correct magnitude and sign.

return s · xsign · xshaved
scaled
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